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Abstract

Preconditioned iterative methods for the indefinite systems obtained by dis-

cretizing the linear elasticity and Stokes problems with mixed spectral elements

in three dimensions are introduced and analyzed. The resulting stiffness matrices

have the structure of saddle point problems with a penalty term, which is associ-

ated with the Poisson ratio for elasticity problems or with stabilization techniques
for Stokes problems. The main results of this paper show that the convergence

rate of the resulting algorithms is independent of the penalty parameter, the num-

ber of spectral elements N and mildly depend.ant on the spectral degree n via the

inf-sup constant. The preconditioners proposed for the whole indefinite system are

block-diagonal and block-triangular. Numerical experiments presented in the final

section show that these algorithms are a practical and efficient strategy for the

iterative solution of the indefinite problems arising from mixed spectral element

discretizations of elliptic systems.
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1 Introduction

The goal of this paper is to introduce and analyze some preconditioned iterative meth-

ods for the large indefinite linear systems arising from the mixed spectral discretization
of the linear elasticity system and the limiting Stokes problem in three dimensions.

Standard finite element discretizations of elasticity problems can suffer from the phe-

nomenon of locking when the Poisson ratio tends to 1/2 (almost incompressible case);

see Babu_ka and Suri [3]. This means that the convergence rate of the finite element

method deteriorates when u approaches 1/2. Moreover, the resulting linear system,

even though symmetric and positive definite, has a condition number that goes to in-

finity when the Poisson ratio tends to 1/2. Both problems can be overcome by using a

mixed finite element formulation and rewriting the problem as a saddle point problem

with a penalty term; see Brezzi and Fortin [12]. The penalty term depends on the Pois-

son ratio for elasticity problems or on stabilization parameters for Stokes problems. By

carefully choosing the finite element spaces in order to satisfy the inf-sup condition, we

obtain a convergent method. The stiffness matrix is symmetric and indefinite.

In recent years, several iterative methods have been proposed and studied in the

case of low-order h-version finite elements, such as Uzawa's algorithm (see Elman and

Golub [17], Bramble, Pasciak and Vassilev [10]), multigrid (see Verfiirth [37], Wit-

turn [39], Brmess and B15mer [8], Brenner [11]), preconditioned conjugate gradient (see

Bramble and Pasciak [9]), and preconditioned conjugate residuals (PCR) (see Rusten

and Winther [34], Silvester and Wathen [35], [38], Klawonn [22], [24]). Elman [16] has

carried out a careful comparison of the performance of four of these methods applied

to Stokes problems in two dimensions.
Here we consider instead spectral element discretizations. For a general introduc-

tion to spectral methods, we refer to Canuto, Hussaini, Quarteroni, and Zang [13],

Bernardi and Maday [7], and Funaro [20]. See also Babu_ka and Suri [4] for the re-

lated p-version of the finite element method. Already for scalar problems, the stiffness

matrices obtained by spectral and p-version finite elements are less sparse and more
ill-conditioned than those obtained with h-version finite elements. The construction

and analysis of efficient preconditioned iterative methods is therefore more challeng-

ing. We refer to Pavarino and Widlund [31], Casarin [14] and to the references therein
for an overview of recent results based on domain decomposition techniques for elliptic

scalar problems. In the context of spectral elements for Stokes and Navier-Stokes prob-

lems, iterative methods have been studied in Maday, Meiron, Patera and Ronquist [25],

Maday, Patera and Ronquist [26], Fischer and Rcnquist [18], and R0nquist [33]. The

methods proposed by these authors are based oh conjugate gradient iterations on the

reduced Schur complement of the discrete Stokes matrix involving only the pressure

unknowns. In the context of linear elasticity and p-version finite elements, iterative

methods have been studied by Mandel; see [28], [29] and the references therein. These

works are based on the pure displacement formulation and are concerned mainly with

compressible materials.

In this paper, we propose solving the whole indefinite system arising from the mixed

spectral element discretization using the results in Klawonn [24], [23] and extending his

h-version study to spectral elements. We will consider both block-diagonal and block-



triangularpreconditioners.In the first case,thepreconditionedoperatoris symmetric
indefiniteand wecanusethe PCRmethod. In the secondcase,the preconditioned
operatoris no longersymmetricandwewill considerthreeiterativemethods:GMRES
without restart,Bi-CGSTABand QMR;seeBarretet al. [5] andFreund,Golub,and
Nachtigal[19]for an introductionto thesemethods.

Themainresultof thispaperis that theconvergencerateof theproposedalgorithms
is independentof the penaltyparameteru, the number of spectral elements N and

mildly dependent on the the spectral degree n via the inf-sup constant. This is due

to the dependence on n of the inf-sup constant for our choices of spectral element

spaces in the discretization. We will consider two choices of mixed spectral spaces,

known as the Qn - Qn-2 and Qn - Pn-1 methods; see Maday, Patera a_d R0nquist

[26] and Stenberg and Suri [36]. Several numerical experiments reported in the final
section confirm this result and show that the number of iterations required by the

triangular preconditioner is much smaller than the number of iterations required by

the block-diagonal preconditioner, while its cost is only marginally higher.

The organization of the paper is as follows. Section 2 introduces the elasticity and

Stokes systems in both the pure displacement and mixed formulation. In Section 3, two

mixed spectral element discretizations are introduced. These are based on the Gauss-

Legendre-Lobatto (GLL) quadrature, briefly reviewed in Section 3.1. The known results

for the associated inf-sup constants are reported in Section 3.2. The preconditioned

iterative methods and the main convergence results are introduced in Section 4, with

the block-diagonal preconditioner in 4.1 and the triangular preconditioner in 4.2. In

Section 5, we report the results of several numerical experiments in three dimensions,

both with block-diagonal and triangular preconditioners, with one and many spectral
elements.

2 The linear elasticity and Stokes systems

We consider a polyhedral domain 12 C R 3, fixed along a subset of its boundary r0,

subject to a surface force of density g along F1 = Oft - F0 and subject to an external

force f. Let V be the Sobolev space V = {v E Hl(fl) _ : vlr0 = 0}. The linear elasticity

problem (pure displacement model) consists in finding the displacement u E V of the

domain f_ such that:

2p_e(u):e(v)dx+A£divudivvdx = <F,v> VvEV, (1)

where A and # are the Lam_ constants, eij(u) = 1(0_._ 0__._7 0_j + 0=, _ is the linearized stress
tensor, and the inner products are defined as

3 3 3 3

i=1 j=l i=1 1 i=1

Almost incompressible materials are characterized by ver_¢ large values of A, or, in

by u close to 1/2. When low order h-versionterms of the Poisson ratio u - 2(_+,),
finite elements are used in the discretization of (1), the locking phenomenon causes a



deteriorationoftheconvergencerateash _ 0; see Babu_ka and Suri [3]. If the p-version

is used instead, locking in u is eliminated, but it could still be present in quantities of

interest such as Adivu. Moreover, the stiffness matrix obtained by discretizing the pure

displacement model (1) has a condition number that goes to infinity when v --+ 1/2.

Therefore, the convergence rate of iterative methods deteriorates rapidly as the material

becomes almost incompressible.

These locking problems can be overcome by introducing the new variable p =

-)_divu E L2(Q) = W and by rewriting the pure displacement problem in the following

mixed formulation (see Brezzi and Fortin [12]). Find (u,p) E V × W such that

- f divvpdz = <F,v> VvEV1 (2)
- f_ divu q dx - -f f_ pq dx = 0 Vq E W.

With the standard definitions ae(u,v) = 2# fn _(u) : e(v)dx, b(v,q) = - f_ divvqdx,

and c(p,q) = f_pqdx, this problem takes the form: find (u,p) E V × W such that

u,v) + b(v,p) = <F,v> VvEVav,u,q) - -_c(p,q) = 0 Vq E W.
(3)

When A ---, oc (or, equivalently, v _ 1/2), we obtain from (2) the limiting problem for

incompressible elasticity:

{ a¢(u,v) + b(v,p) = <F,v> VvEVb(u,q) = 0 Vq E W. (4)

In case of homogeneous Dirichlet boundary conditions on the whole boundary 0f_,

the pressure will have zero mean value, so we define W = L_)(Q). In this case, problem

(2) can equivalently be written in the following way (see Brezzi and Fortin [12]):

a(u,v) + b(v,p) = <F,v> VvEV1 c (5)
b(u,q) _¥ (p,q) = 0 VqEW,

where here a(u,v) = # fn Vu : Vv dx. The limiting problem when A _ oc is the Stokes

system describing the velocity u and pressure p of a fluid of viscosity #:

a(u,v) + b(v,p) = <F,v> VvEVb(u,q) = 0 vq E W. (6)

The penalty term in (5) might be present due to stabilization techniques.

3 Mixed spectral element methods

For an introduction to spectral elements see Patera [30], Maday and Patera [27], Maday,

Patera and Ronquist [26] and the references therein.

Let _I be the reference cube [-1, 1]3 and let Q_(fl**s) be the set of polynomials on

fi_S of degree n in each variable and P,_(fl_S) be the set of polynomials on f_] of total

degree n. Let the domain _ be decomposed into a finite element triangulation U_N=I_i



of nonoverlapping elements. Each fli is the affine image of the reference cube fli =

Fi(l'_rel), where Fi is an affine mapping. We discretize each displacement component

by conforming spectral elements, i.e. by continuous, piecewise polynomials of degree

n:

V n={vEV:vkln,oFiEon(a_e]),i= 1,.-.,N, k=1,2,3}.

We consider two choices for the discrete pressure space Wn:

W_ = {q e W : q_ o Fie Qn-_(f_/), i = 1,---,N},

= {q w: o e i = 1,...,N}.

The choice W_ has been proposed for the Stokes system by Maday, Patera and Ronquist

[26] and it is known as the Qn - Qn-2 method.. A basis for W_ can be constructed

by using the tensor-product Lagrangian interpolants associated with the internal GLL

nodes, described in the next section in more details.

The second choice corresponds to Method 2 analyzed in Stenberg and Suri [36].

We will call this method Qn - Pn-1. For Pn-1 it is not possible to have a tensorial

basis, but other standard bases, common in the p-version finite element literature, can
be used.

3.1 Gauss-Lobatto-Legendre (GLL) quadrature and the discrete prob-

lem

The efficient evaluation of the multiple integrals of polynomials, involved in our model

k nproblem, is based on numerical quadrature at the GLL points. Let {_i, _j,_ }i,j,k=o be

the set of GLL points on the reference cube [-1, 1]3, and let ai be the weight associated

with _i . Let li(x) be the Lagrange interpolating polynomial vanishing at all the GLL

nodes except at _i, where it equals one. By tensor product; the basis functions on the

reference cube are then defined by

li(x)lj(y)lk(z), 0 <_ i,j,k <_ n.

Since every polynomial in Qn(_ef) can be written as

ft n n

i=0 j=0 k=0

these basis functions form a nodal basis. Each integral of the continuous model (2) is

then replaced by GLL quadrature sums. On _1

n 12 rt

i=0 j=O k=O

and in general on

N

(u,V)Q,f_= Z

rt

s=l i,j,k=O
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Figure 1: Sparsity pattern of the stiffness matrix K for model problem (7) discretized

with method Qn - Qn-2 on one element, n = 5, _' = 0.3
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where (J_] is the determinant of the Jacobian of F_. The analysis of this discretization

technique can be found in Bernardi and Maday [7] and Maday, Patera and R_nquist

[26].

The discrete problem obtained from pb. (3) is:

{ a_(u,v) + bQ(v,p) - < F,v >Q,_ Vv _ V _bQ(u,q) - _cQ(p,q) = 0 Vq e W '_, (7)

where a_(u,v)= 2#(e(u) : e(v))o,_, bQ(v,q)= -(divv, q)Q,_, c(p,q)= (p,q)Q,_.

The bihnear forms b(., .) and c(., .) are computed exactly by GLL quadrature since the

Oi are affine images of the reference cube. This system is a saddle point problem with

a penalty term and has the following matrix form:

A B T ]Kx = B -½C x = b . (8)

The stiffness matrix K is symmetric and indefinite. It is less sparse than the one

obtained by low-order finite elements, but is still well-structured. See Figure 1 for the

sparsity structure of K. An analogous discrete problem with C = 0 is obtained in

the incompressible case. For the Stokes problem, the discretization of the equivalent

formulations (5) and (6) lead to an analogous block structure, with A consisting of three

uncoupled discrete laplacians and with the penalty term in (5) scaled by 1/(A +/2).
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3.2 Estimates of the infosup constant for spectral elements

The convergence of mixed methods depends not only on the approximation properties

of the discrete spaces V n and W n, but also on a stability condition known as the

inf-sup (or LBB) condition; see Brezzi and Fortin [12]. For numerical studies of the

inf-sup constant of various h-version finite elements, see Bathe and Chapelle [6] and

Aristov and Chizhonkov [1]. While many important h-version finite elements for Stokes

problems satisfy the inf-sup condition with a constant independent of h, the important

spectral elements proposed for Stokes problems, such as the Qn - Qn-2 and Qn - Pn-1
methods, have an inf-sup constant that approaches zero as n -(d-l)/2 (d = 2, 3). This

result has been proven for the Qn -Qn-2 method by Maday, Patera and Renquist [26],

where an example is constructed showing that this estimate is sharp. Stenberg and

Suri [36] proved the following, more general, result covering both methods.

Theorem 1 (Stenberg and Suri [36]) Let the spaces V n and W n satisfy assumptions

(A1)-(Ad) of[36] (satisfied by both our methods). Then for d = 2,3

d--I wr t ,sup (divv, q) >_Cn_(_T)IIqIIL 2 Vq ¢
veV-\(0) IlVllH _

where the constant C is independent of n and q.

For the Qn - Pn-1 method, no example is known regarding the sharpness of this

estimate. We can rewrite the inf-sup condition in matrix form as

qtBA-1Btq >_Z2qtCq Vq • W n, (9)

d--1

where j3o = Cn -(--_-) is the inf-sup constant of the method;, see Brezzi and Fortin [12].

Therefore /3o2 scales as Amin(C-1BA-1B t) • If/31 is the continuity constant of B, we
have

vtBtq </31(qtCq)l/2(vtAv) 1/2 Vv • V",Vq ¢ W _. (10)

From (9) and (10) it follows that the

/32 < qtBA-1Btq < _ Vq ¢ W '_,
- qtCq -

for positive constant 50 and/31. For stable h-version finite elements, both/_0 and /31

are independent of h. Theorem 1 shows that this is no longer the case when spectral
elements are used. However, numerical experiments by Maday, Meiron, Patera and

Renquist [25] and [26], have shown that for the Q, - Q,_-2 method, for practical values

of n (e.g. n < 16), the dependence of/30 on n is much weaker. In our numerical

experiments in Section 5, we show that the situation is even better for the Q,_ - P,_-a

method. Of course, the trade-off in this case is the loss of a tensorial basis.

4 Preconditioned iterative methods

The indefinite system Kx = b obtained from our spectral element discretization (8),

will be solved iteratively by preconditioned Krylov methods for indefinite systems. Two

classes of preconditioners will be considered: block-diagonal and triangular.



4.1 Block-diagonal preconditioners

Wefirst considera block-diagonalpreconditionerfor K with positive definite blocks
and C:

D= [ A0 cO ] (11)

We wiU denote by D the case with exact blocks A = A and C = C. Interesting choices

for A are given by h-version finite element discretizations on the GLL mesh or by

substructuring domain decomposition methods, where a0 and al have a polylogarithmic

dependence on the spectral degree n (for the scalar case, see Pavarino and Widlund

[32] and Casarin [14]). Since the resulting preconditioned system is symmetric, we can

use the Preconditioned Conjugate Residual Method (PCR); see Ashby, Manteuffel and

Saylor [2] and Hackbusch [21]. See Elman [16] for a short description of the ORTHMIN

version of PCR for symmetric indefinite systems.

In his thesis [24], Klawonn considered low-order finite elements and proved an esti-
mate for the condition number of D-1K, under the following assumptions that 2, and

are good preconditioners for A and C respectively:

i)3a0, al > 0 such that

a_vtAv < vtav < a_vtAv Vv e Vn;

ii) C is spectrally equivalent to the pressure mass matrix C : 3co, cl > 0 such that

c_qtCq < qtCq <_c_qtCq Vq E W n.

Theorem 2 (KIawonn [24], pp. 46-47)

max{a_, c2} cond(D-iK)
cond(JD -1K) <_ min{a2o, Cg}

and

1/2 + _/B12+ 1/4
cond(D-1K) <_

-1/2 + V/_o2 + 1/4

where/3o is the inf-sup constant of the method and/31 is the continuity constant of B.

Clearly, this abstract result can also be applied to high-order elements. Combining

Theorems 1 and 2, we obtain convergence estimates for both methods we have proposed.

Theorem 3 If K is the stiffness matriz of the discrete system (7) obtained with either

the Qn - Qn-2 or the Qn - Pn-1 method and JD is the block-diagonal preconditioner

(11), then
d--1

cond(D-1K) < C_o I = Cn (-_-), d = 2,3.

We remark that the number of iterations of the PCR algorithm applied to an indefinite

system is bounded by the condition number of the system (see Hackbusch [21]). This is

different from the bounds for conjugate gradient algorithms, where the number of iter-

ations is bounded by the square root of the condition number of the system. Therefore,
d--1

the number of iterations of our preconditioned algorithm is bounded by Cn (---i-).



4.2 Triangular preconditioners

An alternative way to precondition the saddle-point problem (8) is provided by the

lower and upper triangular preconditioners

B d ' 0 d ' (12)

where A and C are positive definite matrices. Again, we will denote by TL and Tu

the case with exact blocks J_ = A and C = C. Since the resulting preconditioned

system is no longer symmetric or positive definite, we need to use Krylov methods for

general nonsymmetric systems. In particular, we will consider three relatively recent

methods: GMRES, Bi-CGSTAB and QMR; see Barret at al. [5] and Freund, Golub

and Nachtigal [19]. We remark that each application of the inverse of the triangular

preconditioners :FL or Tu is only marginally more expensive than the block-dia^gonal

preconditioner. In fact, both preconditioners require the solution of a system for A and

one for C. In addition, the triangular preconditioner requires only one application of

B (or Bt):

u = 0 u = . (13)
B p - -IBA -1 p ¢-l(-B;t-lu+p)

In Klawonn [24], it is first proved a bound for the spectrum a of the preconditioned

operator with exact blocks. The surprising result is that such spectrum is a subset of

the positive real axis.

Theorem 4 (Klawonn [24], p. 56)

a(TL1K) = a(KTU 1) C [_,_ + 1] U {1}.

Combining this result and the estimate of _0 given in Theorem 1 for our spectral

element spaces, we obtain the following result.

Theorem 5 If K is the stiffness matrix of the discrete system (7) obtained with either

Q,_ - Q,_-2 or Q,_ - P,_-I spectral elements and T is the lower or upper triangular

preconditioner (12) with exact blocks, then

cond(T -1 K) <_ C3o 2 = Cn (d-U, d = 2, 3.

If GMRES is used to solve our problem, it is possible to prove that the number of

iterations required is bounded by the square root of the condition number of T-1K;
d--1

see Klawonn [24], Theorems 5.3 and 5.4. Therefore, we have the same bound Cn(-_-)

as for PCR with block-diagonal preconditioner.

The case of a triangular preconditioner with inexact blocks is studied in Theorem

5.2 in Klawonn [24], pg. 59, under the standard assumptions i) and ii) of the previous

section. The estimate provided is analog to the case with exact blocks, but it is more

complicated and we refer to [24] for the details.



5 Numerical results

The numerical results are divided into a preliminary section regarding the inf-sup con-

stant and into four sections corresponding to block-diagonal and triangular precondi-

tioners, each divided into single-element and multi-element case. The iterative meth-

ods considered are PCR for the block-diagonal preconditioner and GMRES (without

restart), Bi-CGSTAB and QMR for the triangular preconditioner. All the computations

were performed in MATLAB 4.2 on a SPARCceJater 2000. The model problem consid-

ered is (2), discretized with the Qn-Qn-2 or Qn -Pn-1 spectral element methods. The

resulting discrete systems have a structure as in (8). The implementations of GMRES,

Bi-CGSTAB and QMR are the Matlab templates from [5], while the implementation

of PCR is the same as in [16]. Except Table 11 showing the discretization errors in the

L2-norm, all the results reported are iteration counts for the iterative methods consid-

ered. The initial guess is always zero and the right-hand side f consists of uniformly
distributed random numbers in [-1,1]. The stopping criterion is I[rill2/llr0[12 _< 10-6,

where ri is the i-th residual. We did not try to optimize any of these routines and in

each table, the size of the largest problem we were able to run was determined by the

size of the available memory. This was particularly limiting in the multi-element case,

where already with four elements, we could run only cases up to n = 6. We considered

only preconditioners with exact blocks, in order to study the algorithms under the best

of circumstances. For the single-element block-diagonal case, we considered also pre-

conditioners with inexact blocks based on piecewise linear finite elements on the GLL

mesh.

5.1 The inf-sup constant

We first report in Table 1 a comparison of the spectrum of the matrices C-1S =

C -1BA -1B t associated with the two methods Q,_ -Qn-2 and Q_ -Pn-1. Since the inf-

sup constant/30 scales like _, these results give an indication on the performance

of the PCR method reported in the following tables. The first set of results for the

Qn - Qn-2 method agree with the 3-d results of Maday, Patera and Ronquist [26]. For

these relatively low values of n, Amin scales like n -a and therefore/30 scales like n -°'5,

which is better than the value predicted by the theory (n-a). 2-d numerical results

in Maday, Meiron, Patera and Ronquist [25] for higher values of n (16 _< n < 36)

show that the decay of/30 approaches the theoretical bound, but is still better than

the value predicted by the theory (n-°'5). The case n = 10 could not be run due to

memory limitations. The second set of results in Table 1 show that the Q_ - P,_-a

method has a much better inf-sup constant. From so few values of n, it might look

like Ami_ is bounded away from zero. However, a closer look shows that of A,_i_ has

now a zig-zag behavior. By separating odd and even values of n, we found that Ami_

scales appro_mately like n -°'1. Higher values of n are needed in order to understand

the asymptotic behavior of Ami,_ for this method. The maximum eigenvalue quickly

approaches the same value Am_x = 0.65 for both methods.

We remark that for h-version finite elements, a numerical study of the inf-sup

constant seems simpler. In Bathe and Chapelle [6], only three or four values of h are

needed to predict the asymptotic behavior of Amid.



1/2
Table1: Inf-supconstant/30= Amin

On - Qn-2 Qn - Pn-1

cond(C -1 S) ,_rnax /_min cond(C -1 S) "_max '_minn

3 2.1084 0.2284 0.1083

4 7.3040 0.6334 0.0867

5 9.2670 0.6447 0.0695

6 11.2829 0.6500 0.0576

7 13.4537 0.6500 0.0483

8 15.8016 0.6500 0.0411

9 18.3445 0.6500 0.0354

10

2.1527 0.3611 0.1677

2.6771 0.4570 0.1707

3.4258 0.5973 0.1743

3.7291 0.6097 0.1635

3.9161 0.6499 0.1659

4.0713 0.6499 0.1596

4.0446 0.6500 0.1607

4.1653 0.6500 0.1560

Table 2: Condition numbers for v = 0.5

On -Qn-2
n cond(D-1K) cond(K)

3

4

5

6

7

8

9

exact block-diagonal preconditioner

Qn -- Pn-1

10.827 29.338

16.259 130.52

20.040 404.29

23.977 1,042.1

28.332 2,371.1

33.038 4,609.2

38.132 8,845.7

cond( D-1K )

7.931

8.196

8.556

9.096

9.121

9.437

9.382

cond( K )

69.613

214.63

869.92

3,656.6

18,427

86,673

452,767
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Table2 reportsthe conditionnumbersof the preconditionedsystemD-1K: here

K is the Stokes matrix obtained for u = 1/2 and D is the preconditioner with exact

blocks. By Theorem 3, these condition numbers scale like the inverse of the respective

inf-sup constant. In fact, the results for Qn - Qn-2 clearly show a linear growth with

n. The results for Q_ - Pn-1 are much better and, in comparison, they almost look

bounded by a constant. However, by again separating odd and even values of n, the

growth still appears linear.

5.2 Block-diagonal preconditioner: single-element case

In Table 3, we report the PCR iteration counts for both methods with exact precon-

ditioner. We followed the PCR implementation of Elman [16], which switches from

the ORTHOMIN to the ORTHODIR version to avoid breakdown. In our experiments,

this switch often took place for u near and equal to 1/2. As in Klawonn [22], the

results are uniform in the Poisson ratio u: for each fixed degree n, the number of PCR

iterations is bounded by a constant independent of u. As the material becomes almost

incompressible, the number of iterations tends to a constant which is the number of

iterations required by the limiting Stokes problem. As the spectral degree n increases,

the number of iterations increases, in agreement with Theorem 3. This effect is less

pronounced for compressible materials (for u = 0.3 and 0.4 the number of iterations

stays practically constant), but becomes more important near or at the incompressible

limit. This is particularly true for the Qn - Qn-2 method, where the growth of the

number of iterations for u = 1/2 is clearly linear. The results for Qn - P,_-I are better,

as expected from the better inf-sup constant of this method. In this case, it is even

hard to read a linear growth from the table, which has large constant blocks. Graphs

showing the convergence history of both methods for n = 8 and v = 1/2 can be found

in Figure 2. In Table 4, the same results are reported for the equivalent formulation

(5) instead of (2). This implies that block A in K now consists of three uncoupled

discrete laplacians, one for each component of u. The problem is somewhat harder to

solve and PCR takes more iterations than in each corresponding case of the previous

table {except n = 3 for Qn - Pn-1 ). Again, the results for Q_ - P,_-I are consistently

better than those for Q,_ - Qn-2. Now a linear growth with n is clear for both methods

(for Qn - P=-I the odd and even values of n have to be separated).
Next, we consider an inexact preconditioner by choosing as u-block A the Q1 finite

element stiffness matrix obtained by discretizing the term f_ Vu : Vv dx on the GLL

grid. In the scalar case, it is well-known that such matrix is spectrally equivalent to
the stiffness matrix obtained by spectral discretization; see DeviUe and Mund [15]. In

Table 5, we study numerically the quality of such preconditioner in three dimensions

for a Poisson problem on the reference cube with homogeneous Dirichlet boundary con-

ditions. In the first column, we report the condition number of F_ K. It is not obvious

that the values are bounded by a constant, but they appear to grow slower then any

power of n or log(n), as results from log-log plots. In any case, these values are larger

than the corresponding ones reported by Ronquist [33] for Fp 1 (the P1 finite element

stiffness matrix obtained by dividing each element of the GLL mesh into tetrahedra).

The values reported by Ronquist are all from 2 to 2.65, for values of n between 4 and
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Table 3: Iteration counts with exact block-diagonal preconditioner
Q, - O,_-2

n /2

0.3 0.4 0.49 0.499 0.4999 0.49999 0.499999 0.5

1 1 1 1 1 1 1 1

7 7 7 7 7 7 7 7

11 13 21 21 21 21 21 21

11 15 27 31 31 31 31 31

11 15 29 33 35 35 35 35

11 15 29 35 35 35 37 37

11 15 31 37 39 39 39 39

11 15 31 39 41 41 41 41

Qn -- Pn-_

n v

0.3 0.4 0.49 0.499 0.4999 0.49999 0.499999 0.5

2 2 2 2 2 2 2 2 2

3 9 9 9 9 9 9 9 9

4 9 11 15 15 15 15 15 15

5 9 13 19 21 21 21 21 21

6 9 13 21 21 21 21 21 21

7 11 13 21 21 21 21 21 21

8 11 13 23 25 25 25 25 25

9 11 13 23 25 25 25 25 25

10 11 13 23 25 25 25 25 25
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Table4: Equivalentformulation:iterationcountswith exactblock-diagonalprecondi-
tioner

Qn -- Qn--2

n v

0.3 0.4 0.49 0.499 0.4999 0.49999 0.499999 0.5

2 1 1 1 1 1 1 1 1

3 7 7 7 7 7 7 7 7

4 15 17 21 23 23 23 23 23

5 19 21 33 37 37 37 37 37

6 17 21 37 41 43 43 43 43

7 19 21 39 45 45 45 45 45

8 19 23 41 47 47 47 47 47

9 19 21 41 47 49 49 49 49

Q,_ - P,_-I

n /2

0.3 0.4 0.49 0.499 0.4999 0.49999 0.499999 0.5

2

3

4

5

6

7

8

9

10

2 2 2 2 2 2 2 2

7 7 7 7 7 7 7 7

10 13 15 15 15 15 15 15

11 15 23 25 25 25 25 25

13 17 25 27 27 27 27 27

13 17 27 29 29 29 29 29

13 17 31 33 33 33 33 33

13 17 29 31 31 31 31 31

13 18 31 33 35 35 35 35

Table 5: Q] finite element preconditioner on the GLL mesh for Poisson equation:
condition numbers and relative errors with known exact solution

112n con (r 1K) 11_'_112 Ilu_ll2
3 4.8150 0.9794 0.0130

4 8.4566 0.5892 0.0020

5 11.1569 0.3481 5.1163e-5

6 13.0747 0.2352 1.4581e-5

7 14.4623 0.1704 2.1302e-7

8 15.4977 0.1296 7.4257e-8

9 16.2954 0.1021 7.0685e-10

10 16.9275 0.0826 2.7414e-10

11 17.4406 0.0682 1.8431e-12

12 17.8653
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Table6: Iteration counts with Q1 u-block preconditioner and exact p-block

Qn -- Qn--2

n /2

0.3 0.4 0.49 0.499 0.4999 0.49999 0.499999 0.5

2

3

4

5

6

7

8

9

1 1 1 1 1 1 1 1

13 13 13 13 13 13 13 13

28 32 45 49 48 48 48 48

36 46 75 84 84 84 84 84

44 52 94 110 111 111 111 111

49 60 110 133 134 133 134 134

55 68 128 154 158 159 158 158

57 72 139 173 179 179 179 179

n -- Pn-1

n /]

0.3 0.4 0.49 0.499 0.4999 0.49999 0.499999 0.5

2 2 2 2 2 2 2 2 2

3 14 14 14 14 14 14 14 14

4 27 30 36 37 37 37 37 37

5 34 40 56 61 61 61 61 61

6 42 49 68 75 75 75 75 75

7 46 54 80 87 87 87 87 87

8 52 61 92 102 103 103 103 104

9 55 65 97 109 109 109 110 109

10 57 69 107 121 121 121 122 122
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Figure2: Convergencehistoryfor n = 8 and u = 1/2: QP - ex = Qn - Pn-1 method

with exact preconditioner, QQ - ex = Q,_ - Qn-2 method with exact preconditioner,

QP- Q1 = Q,_- P,_-I method with inexact Q1 preconditioner, QQ- Q1 = Qn- Qn-2

method with inexact Q1 preconditioner
2 i _ i i i J J

-1:

._-2
v
O

C3)
_o

-3

--4

-5

-% 2o ,'0 8'0 8'0 ' ' ' ,so100 120 140
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12. In the second and third columns of Table 5, we report the relative errors in the

discrete/2-norm between the exact solution u_x = sin _(x + 1) sin _(y + 1) sin _(z + 1),
obtained by computing the appropriate right-hand side f = -Au, and the discrete so-

lution u,_ (spectral) or UQ1 (Q1 fem on the GLL mesh). The difference between spectral

and h-version finite element accuracy is very clear.

In Table 6, we report the iteration counts for the model problem (2) when the

inexact block A = diag(FQ1,Fol,Fol ) is used in the preconditioner. Even if the

uniformity in u is preserved, the number of iterations grows considerably, especially for

higher values of n. Therefore, it is does not appear that this inexact preconditioner is

effective for PCR methods applied to mixed spectral systems'. Results for the equivalent

model problem (5) were similar and are not reported.

Figure 2 shows the convergence history of the Q,_ - Qn-2 and Q,_ - Pn-1 methods

with n = 8 and with exact and inexact Q1 preconditioners for the Stokes problem. The

resulting graphs are similar to the ones reported in Elman [16].

5.3 Block-diagonal preconditioner: multi-element case

Tables 7 and 8 report the iteration counts for Qn-Q,_-2 and Q,_- Pn-1 respectively.

Here we study the dependence of the number of iterations on the number of elements N

for a fixed spectral degree n. This is analog to studying the dependence on h for a hp-

finite element method. We divide the domain _ into N = N_ × ivy × N_ subcubes and

15



Table7: Iterationcount for Qn-Qn-2 with exact block-diagonal preconditioner: chang-

ing N for fixed n

n

2

2

2

2

2

3

3

3

3

4

4

N = Nx x Ny x :Vz v
0.3 0.4 0.49 0.499 0.4999 0.49999 0.499999 0.5

l=lxlxl

8=2x2x2
27=3x3x3

64=4x4x4
125=5x5x5

1=lxlxl

8=2x2x2

27=3x3x3

64=4x4x4

1 1 1 1 1 1 1 1

6 7 7 7 7 7 7 7

9 11 17 17 17 17 17 17

10 13 19 2t 21 21 21 21

10 13 21 23 23 23 23 23

7 7 7 7 7 7 7 7

11 13 21 23 23 23 23 23

11 13 21 23 23 23 23 23

Ii 13 21 23 25 25 25 25

1 = 1 x 1 x I 11 13 21 21 21 21 21 21

8 = 2 x 2 x 2 11 15 23 27 27 27 27 27

Table 8: Iteration count for Q,_-Pn-1 with exact block-diagonal preconditioner: chang-

ing N for fixed n

n

2

2

2

2

2

3

3

3

4

4

N = N:_ x N_, x Nz v
0.3 0.4 0.49 0.499 0.4999 0.49999 0.499999 0.5

l=ixlxl

8=2x2x2

27=3x3x3

64=4x4x4

125=5x5x5

2 2 2 2 2 2 2 2

9 13 19 21 21 21 21 21

11 14 23 27 27 27 27 27

11 15 23 27 27 27 27 27

11 15 23 27 27 27 27 27

1 = 1 x 1 x 1 9 9 9 9 9 9 9 9

8 = 2 x 2 x 2 ii 13 21 23 23 23 23 23

27 = 3 x 3 x 3 ii 13 23 25 25 25 25 25

I = 1 x 1 x I 9 ii 15 15 15 15 15 15

8 = 2 x 2 x 2 11 13 23 25 25 25 25 25

16



Table9: Iterationcount
ingnforfixed N=4=2×2× 1

for Q,_-Qn_2 with exact block-diagonal preconditioner: chang-

n b'

0.3 0.4 0.49 0.499 0.4999 0.49999 0.499999 0.5

2 5 5 5 5 5 5 5 5

3 10 13 21 23 23 23 23 23

4 11 15 25 29 29 29 29 29

5 11 15 27 31 33 33 33 33

6 11 15 27 35 35 35 35 35

Table 10:

changing n for fixed N = 4 = 2 × 2 × 1

Iteration count for Q,_ - P,_-I with exact block-diagonal preconditioner:

n //

0.3 0.4 0.49 0.499 0.4999 0.49999 0.499999 0.5

2 9 11 17 19 19 19 19 19

3 10 13 19 23 23 23 23 23

4 11 14 23 25 27 27 27 27

5 11 14 23 27 27 27 27 27

6 11 14 23 27 27 27 27 27

we take N_ = Ny = N_ in order to always have a cubic domain (and avoid comparing

problems with different aspect ratios). Due to the cubic growth of N, we could only

run cases with a low value of n = 2, 3,4. The results of the tables seem to indicate a

bound on the number of iterations independent of N, in agreement with the theory.

This is particularly evident for the Qn - Pn-1 method and for n = 2, which allows us

to run with sufficiently many elements. As before, the results are uniform in v and the

incompressible Limit is the hardest case, for each n and N fixed.

In tables 9 and 10, we study the dependence of the number of iterations on n, for

a small fixed number of elements N = 4, with N_ = ivy = 2 and Nz = 1. The linear

growth of the number of iterations with n is clearly visible in the incompressible limit

for Qn - Qn-2 (Table 9), while for compressible materials (L, _ 0.3 - 0.4) the number

of iterations seems insensitive to n and bounded by a constant. For the Qn - Pn-1

method, the results of Table 10 are better and the number of iterations seems bounded

by a constant also in the incompressible limit. However, as was shown in the single-

element case, higher values of n might reveal a growth which is still linear, just with a
better constant in front of the linear term.
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Table 11: L2-errors with known exact solution for u = 0.3; Qn - Qn-2 with exact

lower-triangular preconditioner; G=GMRES, B=Bi-CGSTAB, Q=QMR

N = N_ × Ny × N_

l=lxlx 1

8=2x2x2

n iter.

G B Q

2 1 1 1

3 2 1 2

4 4 3 4

5 6 4 6

6 7 4 7

7 7 4 7

8 7 4 7

9 7 4 7

2 2 1 2

3 6 4 6

4 7 4 7

5 7 4 7

Iluu.... -u¢=112
Ilu_lle lip+-112

4.6502e-1 1.0000e+l

1.0027e-1 4.0346e-1

1.8246e-2 7.6835e-2

3.7748e-3 2.5745e-2

3.6803e-4 3.0630e-3

5.9270e-5 6.8210e-4

4.0743e-6 5.0991e-5

5.3355e-7 8.7179e-6

9.4308e-2 2.5707e-1

1.2310e-2 1.1750e-1

1.1785e-3 1.3814e-2

9.1187e-5 1.6598e-3

5.4 Triangular preconditioner: single-element case

In the following tables, we have used the convention G = GMRES, B = Bi-CGSTAB,

Q = QMR. In all cases, we have used the (left) lower-triangular preconditioner TL with

exact blocks.

In the first part of Table 11, we report the errors in the L2-norm between the

Qn - Qn-2 spectral element solution and the known exact solution Ul = u2 = u3 =

sin(2--_x) sin( 2--_ y)sin(2--_z), p = )_div(u) for the elasticity problem with u = 0.3 on

the reference cube (i.e. N:_ = N u = Nz = 1). On each row, corresponding to each

value of n, we report the iteration counts for the three methods and the errors for

the displacement u and for p. The results clearly show the spectral convergence of
the discrete solution to the exact solution. The second part of the table shows the

same results for a multi-element case with 8 elements. Tables 12 and 13 report the

iteration counts for Qn - Q,+-2 and Q= - P,_-I respectively, on the reference element.

For each value of n and u, the results for GMRES, Bi-CGSTAB and QMR are reported.

As in the block-diagonal case, the results are ujaiform in u, i.e. for each fixed n, the
number of iterations tends to the number of iterations of the limiting incompressible

case. Moreover, for each fixed v, the number of iterations grows at worst linearly

with n, in agreement with the theory. This is clear at the incompressible limit, while

away from it the results are much better and in practice bounded independently of

n. Among the three iterative methods, Bi-CGSTAB requires the least number of

iterations, in some cases half of those required by GMRES, but it requires twice as

many applications of the matrix and the preconditioner. Moreover, Bi-CGSTAB shows

a more irregular convergence behavior than the other two methods. QMR has iterations
counts in between Bi-CGSTAB and GMRES, often closer to the last one. QMR also
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Table 12: Iteration count for Qn - Qn-2 on one element, with exact lower-triangular

preconditioner; G=GMRES, B=Bi-CGSTAB, Q=QMR

0.3

GBQ
2 111

3 424

4 636

5 746

6 746

7 746

8 747

9 747

0.4

GBQ
111

434

747

858

958

958

958

958

0.49

GBQ
1 1 1

434

11 7 11
15 9 14

16 12 15

17 14 16

20 14 18

20 13 18

0.499

GBQ
1 1 1

434

11 811

181718

201719

221720

242021

251922

0.4999

GBQ
1 1 1

4.3 4

11 10 12

19 17 18

21 15 20

22 1721

2424 22

2620 23

0.49999

GBQ
1 1 1

434

11 10 12

19 14 18

21 15 20

22 16 21

24 20 22

26 21 23

0.499999

GBQ
1 1 1

434

11 10 12

19 18 18

21 15 20

22 16 21

24 20 22

26 19 23

0.5

GBQ
1 1 1

434

11 10 12

19 14 18

21 15 20

22 20 21

24 20 22

26 17 23

Table 13: Iteration count for Qn - Pn-1 on one element, with exact lower-triangular

preconditioner; G=GMRES, B=Bi-CGSTAB, Q=QMR

0.3

GBQ
2 212

3 535

4 535

5 636

6 736
7 746

8 736

9 846

10 846

r 0.4GBQ
212

535

646

747

847
847

948

948

1058

0.49

GBQ
212

545

868

116 10

127 11

136 11
147 12

14 7 12

15 712

0.499

GBQ
212

545

868

117 11

138 11
147 12

158 13

158 13

188 13

/,I

0.4999

GBQ
212

545

868

12711

138 11

14 7 12

158 13

15.8 13

18 8 13

0.49999

GBQ
212

54 '5

868
12711

13811

14712

15813

15813

18813

0.499999

GBQ
212

545

868
127 11

13 8 11

14 7 12

15 8 13

15 8 13

18 8 13

J 0.5GBQ
2*2

545

868
127 11

138 11

14 7 12

158 13

15 8 13

188 13

requires twice as many matrix and preconditioner applications compared with GMRES.

Of course, GMRES without restart requires much more memory than the other two

methods. In comparison with the block-diagonal results, the triangular preconditioner

requires many less iterations, sometimes half of those required by PCR.

5.5 Triangular preconditioner: multi-element case

Tables 14 and 15 are the analog for triangular preconditioners of Tables 7 and 8 for

block-diagonal preconditioners. Here, we verify numerically the independence of the

iteration counts on N while keeping n fixed. Again, we could run with many elements

only for small values of n = 2, 3, 4, and we used decompositions of the cubic domain

into cubic powers of subdomains. The results indicate in all cases an upper bound inde-

pendent of N. Regarding the different convergence performance of the three methods,

the same considerations as for the single-element case apply.
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Table 14: Iteration countfor Qn - Qn-2 with exact lower-triangular preconditioner:

changing N for fixed n
n N

0.3

GBQ

2 1_ 111
2 23 324

2 33 536

2 43 546

2 53 546

3 1_ 424

3 23 636

3 33 646

4 I_ 636

4 23 646

111

424

647

647

757

434

748

758

747

858

I 0.49GBQ
11 1

434

859

9610

10711

434

11711

11712

11711

12813

0.499

GBQ
111

434

869

10711

10712

434

12812

12812

11811

14914

V

I 0.4999GBQ
111

434

869

10711

11712

434

12812

12813

111012

141015

I 0.49999GBQ
111

434

869

10711

11712

434

12812

12913

111012

141015

0.499999GBQ
111

434

869

10711

11712

434

12812

12913

111012

141015

I 0.5GBQ

111

434

869

10711

11712

434

12812

12913

111012
141015

Tables 16 and 17 are the analog for triangular preconditioners of Tables 9 and 10.

Here, we fix a small number of elements N = 4 and we study the iteration counts

by increasing n and u. Again, the results are uniform in u and linear (at worst)

in n, with the incompressible case being the hardest one. In comparison with the

block-diagonal preconditioner, the triangular preconditioner considerably decreases the

number of iterations, sometimes by as much as one half.

6 Conclusions

We have proposed and analyzed iterative methods for the sparse indefinite systems

arising from the mixed spectral element discretization of elasticity and Stokes prob-

lems. These systems are solved with a preconditioned conjugate residual method when

a block-diagonal preconditioner is used or with Krylov methods for nonsymmetric sys-

tems such as GMRES, Bi-CGSTAB and QMR when a triangular preconditioner is used.

We have proven and have numerically shown that such algorithms have convergence

rates bounded by the inverse of the inf-sup constant and independent of the penalty

parameter in the saddle point formulation (the Poisson ratio for elasticity or a stabi-

lization parameter for Stokes). The two mixed spectral methods considered, Qn - Q,_-2

and Q_ - P,-1, have equivalent theoretical convergence bounds, but we have numeri-

cally shown that the latter one has a better inf-sup constant and gives better iteration

counts. On the other hand, P,_-I does not have a tensorial basis. The exact blocks

in the preconditioners could be replaced by appropriate preconditioners based on low-

order discretizations on the GLL mesh and/or domain decomposition techniques. The

inexact preconditioner based on Q1 finite elements on the GLL mesh largely increases

the iteration counts. Future work should address other inexact preconditioners, such

as P1 finite elements on the GLL mesh, multigrid or domain decomposition methods

and preconditioners for the mass matrix C.
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Table15: Iteration count for Q,_ - Pn-1 with exact lower-triangular preconditioner:

changing N for fixed n
n N

0.3

GBQ
2 1_ 212

2 23 536

2 33 646

2 43 646

2 53 646

3 13 535

3 23 646

3 33 646

4 1_ 535
4 23 646

t 0.4GBQ
212

647

758

758

758

535
757

758

646

858

0.49

GBQ
212
96 10

118 12

118 12

128 13

0.499

GBQ
212

107 11

13 9 14

13 9 14

13 9 14

V

I 0.4999GBQ
212

107 11

13 9 14

13 9 14

1310 14

I 0.49999GBQ

212
107 11

13 9 14

139 14

13 10 14

0.499999

GBQ
212

107 11

13 9 14

13 9 14

13 10 14

0.5

GBQ
2*2

107 11

13 9 14

13 9 14

13 10 14

545 545 545 545 545 545

107 11 11712 117 12 11 7 12 11 7 12 117 12

11 7 12 128 13 128 13 128 13 128 13 128 13

868 868 868 868 868 868

127 12 128 13 128 13 128 13 128 13 128 13

Table 16: Iteration count for Qn - Q,_-2 with exact lower-triangular preconditioner:

changing n for fixed N = 4 = 2 x 2 x 1
n

0.3 I 0.4GBQ GBQ
2 323 323

3 636 647

4 646 858

5 746 858

6 746 858

0.49

GBQ
323

10 7 11

13 9 13

15 9 14

16 10 15

0.499

GBQ
323

118 12

15 11 15

18 14 18

20 14 19

/2

0.4999

GBQ
323

118 12

15 11 16

19 14 19

21 1620

0.49999

GBQ

323
12 8'12

15 13 16

19 14 19

21 1520

0.499999

GBQ

323

12 8 12
15 13 16

19 14 19

21 15 20

0.5

GBQ

323

12 8 12
15 13 16

19 14 19

21 15 20

Table 17: Iteration count for Qn - Pn-1 with exact lower-triangular preconditioner:

changing n for fixed N = 4 = 2 × 2 × 1
n

0.3

GBQ
2 535

3 646

4 646

5 646

6 746

I 0.4GBQ
646

747

858

858
858

0.49

GBQ
869

10 7 11

12 8 12

13 9 13
14 9 13

0.499

GBQ
9710

118 12

14 8 14

15 12 14

15 11 14

/1

0.4999

GBQ
9710

118 12

14 8 14

15 14 14

15 11 14

0.49999

GBQ
9710

118 12

14 9 14

15 12 14

15 11 14

I 0.499999GBQ
9710

118 12
14 8 14

15 13 14

15 11 14

0.5

GBQ

9710

11 8 12
14 9 14

15 14 14

15 11 14
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